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OCHOBHble TUNbI BYTKaHUYECKNX nopos

JlaBa — pacnsiaB ropHOM NOpPoOAbl, N3/INBLUMIACA HA NOBEPXHOCTb
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By/nKaHMYECKMM WNAK — CUIbHO NMEHUCTbIE NaBbl U UX pparmeHTbl NepeMELLLEHHbIe MO BO34yXY
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BY/IKaHMYecKana nbiab (nenen) (mo ymo nemesno no 8o030yxy) —

nocne NMTUPUKaLMKn CTaHOBATCA Typamu.

BynKaHOKNacTM4eckme nopoabl — NPOAYKTbl Pa3MbliBa BY/IKAHUYECKUX COOPYHKEHWNN
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Fig 1. Shaded relief image of Vulcano volcano (grid size 0f 20 m), with the location of seismic profiles (P) and dredges (EAD, see also Table 1); the dashed lines on the island rep

resent the limits of Il Piano and La Fossa calderas (IPC and LFC, respectively). V: Vulcanello; LC: Lentia Complex; LF: La Fossa Cone; CS: Capo Secco; PV: Primordial Vulcano. In the

lower inset, location of the study area (black box) and of the presumed submarine prosecution of Tindari-Letojanni (TL) fault system (dashed line).
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Fig. 2. Shad of image of Vulcano I8 De
Astis et al SB is the bedrock ce, BV: Bocche d
Vukeano; V: Vulcanello: CF: Cala del Formaggio, LC: Lentia Comy a; PR: Punta del Rosario, PM

ul
Punta del Mortaro, PV: Primordial Vulcano; VO: Volcanic outcrop.
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Fig. 6. Shaded relief image of the southern part of Vulcano edifice (), with the indication of Punta del Rosario fan (PRF, dark-grey area); acronyms asin Figs. 1 and 2. Below (band c): two
Sparker 45 k] profiles (location in Fig 6a), showing: a semitransparent seismo-acoustic unit with widespread superficial bedforms in correspondence of the PR fan (P6a) and the sharp
contact between the volcanic terrains of Vulcano southern flank and the sedimentary units of the Patti Sedimentary High (PSH in P6b), along which the headless channel C1is cut. In Fig.
6d the dotted line represents the edge of insular shelves at =120 mbsl; the scars of Punta del Rosario (PR) and Punta del Mortaro ( PM) are also indicated, as well as a wide subaerial
erosive scarp in the southwestern flank of Primordial Vulcano.
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Figure 1 | Hawaiian-Emperor Chain. White dots are the locations of radiometrically dated seamounts, atolls and islands, based on compilations of
Doubrovine et al.28 and O'Connor et al.#C. Features encircled with larger white circles are discussed in the text and Fig. 2. Marine gravity anomaly map is
from Sandwell and Smith?8.
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Fig. 6. A. Swath bathymetric map of the submarine Kolumbo volcanic chain using 10 m isobaths. Right inset: Bathymetric map reciting the 19 volcanic domes in two NE-SW trending
lines, Left inset: Geographical index map.B. Histogram showing the distribution of the height of volcanic cones along the volcanic chain from Kolumbo to the eastern most volcanic
coneNo 19.
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Fig. 1. Location of Santorini within the Hellenic volcanic arc.



Tunbl ByNKAHOB MO CTPOEHUIO

XepJioBas TPeluHa IIJIAKOBBIN KOHYC CJIOXKHBIH BYJIKaH
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LLINTOBOM BYJIKAH (cnesa) c bonbuwium Kpamepom (Kanedepoli),

U MOHKUM MOKPOBOM 3acmelgweli 1a8bl HA N08epxXHOCMuU.

N3nusaHua n1a8bl Mo2ym rnpoucxooumse U3 Kpamepa Ha 8EPUWUHE UsU Yepe3 mpeujuHsl

HQ CKA0HAX. BHympu Kanb0epbl, @ maKkx#e Ha CKAOHAX WumoB0o20 8Y/IKAHA 8CMpevyaromcs
80poHKU 0bpyweHusa. KOHYC CTPATOBY/IKAHA (cnpasa) cocmoum u3 yepeoyroujuxcs
C/10e8 /1a8bl, nensaa, waaxkos u bosnee KpyrnHoix 06710MKO8.

Ha cKnoHe 8yaKaHA NoKa3aH WsaaKkosbili KOHYC.
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Bua Seaward Dipping Reflectors (SDR) Ha cencmunyeckmnx npodpunsx.
PednekTtopsbl «O6pa3OBaHb|» noTokamm 6a3anbToB

J.M. Stica et al. / Marine and Petroleum Geology 50 (2014) 1-21
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tures related to the rift section. Solid white lines show time lines of deposmon details of interpretation in chapter 3. This section was already used in Blaich et al. (2013) and Zalin

(2013), both with different interpretations.
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Figure 2. (A) Regional g o Westorn Gonshomna adapeed from Heilxon et 4l (2008) 20 Almeida et al. (2013), showing the regional disribusion of Lavs lows from Parand—
Etendeka LIP. belts: 1, Aracuai; 2 Ribeira: 3,

West Congo; 4, Dom Feliciano; 5, Kaoko: ammm 7f.np 8, Sierra de la Ventana; 9, Cape Fold Belt, Major cratons: AM. Amazonia: SF. S30 Francisco; LA, Luis Alves: RF, Rio de L
Plata: WA. West Africa; CO, Congo: PP, Paranapanema; AN Angola: KA. Kalahari. (8) Detail of

versions. The focus is on seaward-dipping reflectors (SDR) and the main structural fea-
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Figure 9. Detailed view of the rift section. Colored double arrows show three exam-
ples of strata growth against the rift faults and the propagation of the rift faults to the
East, towards the future site of the breakup (footwall collapse propagation). Internal
unconformities and onlap terminations indicate one criteria to estimate the chrono-
logical evolution of deposition and faulting. Seismic data courtesv of ION-GXT.
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Figure 10. Detailed view of line drawmg in ngure 6 showmg the relationship in time between sag and rift geometries. Two levels were marked internally in green solid lines, in

Brazil. The black dashed line shows the contact of the Rio de la Plata Craton with the Dom Feliciano Belt which is probably the basement of the Pelotas Basin. The

order to d ate the ¢ proximal sag geometry and distal rift. Solid red line is the top of the rift section and of the SDR (post-rift unconformity). Orange

1nd the Luis Alves Craton (LA
framework of Dom Feliciano Beit s parale o th trends o the ift fults. COB Continetal Ocean Boundary. The structura framework of Argentina and the COB (Nack line) are from
Pangaro and Ramos (2012); The structural &amework from Uruguay wntil LAC are from Basei et al. (2010): and the lineaments and contacts from southeastern margin are from
Meilbxon et al. (2008, The red COB is from this study and the black COB for the southeastern margin is from Zalin et al. (2011). Magnetic anomalies from Moulin et al. (20101 (For
interpretation of the references to colour m this figure legend. the reader 1s referred to the web version of this article.)

mask rep: d ition in rift and the brown mask represents deposition in a sag geometry, even in distal rift tectonic environment. Notice that the sag geometry
in depocenters A and B pervades the top of the rift boundary (solid red line) into the drift sequence. Because of these, the post-rift unconformity is equivalent to the breakup

unconformity only in the extreme distal portion of the rift (region C), close to the COB, where no sag geometry is developed. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)



Bua Seaward Dipping Reflectors (SDR) Ha ceMcmmnyeckmnx npodpunsax.
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Bua Seaward Dipping Reflectors (SDR) Ha ceMcmmnyeckmnx npodpunsax.
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Figure 9. Detailed view of the rift section. Colored double arrows show three exam-
ples of strata growth against the rift faults and the propagation of the rift faults to the
East, towards the future site of the breakup (footwall collapse propagation). Internal
unconformities and onlap terminations indicate one criteria to estimate the chrono-
logical evolution of deposition and faulting. Seismic data courtesy of ION-GXT.
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Figure 2. (A) Regional map of Western Gondwana adapted from Heilbron et al. (2008) and Almeida et al. (2013), showing the regional distribution of lavas flows from Parani—
Etendeka LIP and the related dike swarms (green) in relation to a possible structural heritage of the cratons (purple) and mobile belts (yellow). Mobile belts: 1, Araguai; 2 Ribeira; 3,
‘West Congo: 4, Dom Feliciano: 5, Kaoko: 6, Damara: 7, Gariep: 8, Sierra de la Ventana; 9, Cape Fold Belt. Major cratons: AM, Amazénia: SF, Sdo Francisco; LA, Luis Alves; RP, Rio de la
Plata; WA, West Africa; CO, Congo; PP, Paranapanema; AN, Angola; KA, Kalahari. (B) Detail of the regional geology of the studied area, from Argentine to the southeastern margin of
Brazil. The black dashed line shows the contact of the Rio de la Plata Craton with the Dom Feliciano Belt which is probably the basement of the Pelotas Basin. The question mark
relates to the uncertainty about the contact between the Dom Feliciano and Ribeira Belts and the Luis Alves Craton (LAC) extending into the Santos Basin. NE-SW trending structural
framework of Dom Feliciano Belt is parallel to the trends of the rift faults. COB, Continental Ocean Boundary. The structural framework of Argentina and the COB (black line) are from
Pangaro and Ramos (2012); The structural framework from Uruguay until LAC are from Basei et al. (2010); and the lineaments and contacts from southeastern margin are from
Heilbron et al. (2008). The red COB is from this study and the black COB for the southeastern margin is from Zalin et al. (2011). Magnetic anomalies from Moulin et al. (2010). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Figure 5. Regional geoseismic dip section of South Pelotas Basin. Line drawing in depth (Line 30 from ION-GXT Pelotas SPAN). The focus is on the seaward-dipping reflectors (SDR)
and the main structural features related to the rift section. Solid white lines show time lines of deposition, details of interpretation in chapter 3. Black arrow shows the hingeline.
Crustal domains related to deep crustal interpretation and map view of these domains on Figure 8. Solid orange lines on magnetic profile show the position of magnetic anomalies
(G, M3, MO) from Rabinowitz and Labrecque (1979); other anomalies (LMA, M4, M2, MO) are from Moulin et al. (2010). These anomalies are in the original position in order to
correlate with the magnetic profile and the interpretation of the rift structure and of COB. Western limit of LMA in dashed line refers to original work from Moulin et al. (2010) with
no western border of the anomaly in this position. Magnetic profile data from Petrobras regional data bank. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Figure 3. Correlation of stratigraphic charts of Campos, Santos and Pelotas Basin, with focus on the rift- and pre-rift phases as interpreted in this work, showing the correlation of
volcanic sequences. Cabitinas, Camboriti and Serra Geral Formations are equivalent (pre-rift sequences); Imbituba and Curumim Formations are here interpreted as rift-related
volcanism deposited as seaward dipping reflectors; OC, Oceanic Crust. Modified from Winter et al. (2007), Moreira et al. (2007) and Bueno et al. (2007). Details of lithological
representations on Milani et al. (2007b). Ages of magnetic anomalies recognized in this work are from Moulin et al. (2010) and absolute ages after Gradstein et al. (2004),

6 JM. Stica et al. / Marine and Petroleum Geology 50 (2014) 1-21

L A- PARANA BASIN

Figure 4. Seismic interpretation and correlation of the volcanic section (in green mask) in the Parand Basin (A), and as pre-rift sequences on marginal basins: Campos (B); Santos (C)
e Pelotas (D). SG, Serra Geral Formation; CB, Cabitinas Formation; CAM, Camborid Formation. Solid red lines represent the base of flows and green solid lines the top of flows. Yellow
solid lines are faults related to rift-phase and purple solid line is the top of rift section (base of salt in Campos and Santos Basin). The yellow arrow in (A) shows the Paleozoic to
Mesozoic sedimentary rocks of the Parand Basin underneath the Serra Geral Formation and the blue arrows indicate sills intruded in the sedimentary section. Over the Serra Geral,
Cretaceous sediments form the Bauru/Caiud Group (Ba). There are some indications of seismic facies of sediments beneath the pre-rift section in Pelotas and Santos Basins, probably
associated to Paleozoic section of the Parana Basin. Locations of lines are displayed in Figure 1. 3D Seismic data of Santos Basin (C) courtesy of CGG. 2D Seismic data of Pelotas Basin
(D) courtesy of ION-GXT. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Figure 1. Profile across the Argentinian passive margin. A: Pre-stack depth-migrated seismic reflection profile with seaward-dipping
reflectors (SDRs) and Moho interpreted. Inset Is a free-air gravity anomaly map (Sandwell et al., 2014). B: Profile in A restored to & »~+i-
zontal datum representing the margin geometry at the final SDR package. C: Tripartite seismic reflection character of the oceanic GEOLOGY Data Repository item 2017131 | doi10.1130/@38706 1

D: Tripartite seismic reflection character of the SDR packages.
© 2017 Geological Society of America. For permission to copy, contact editing@geosociety.org.
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Fig. 4. Seismic example of the transitional domain along the Pelotas Basin (modified from Cainelli & Mohriak 1998).
SDRs, seawards-dipping reflections; twt, two-way travel time.

From: MoHRIAK, W. U., DANFORTH, A., PosT, P. I., BRowN, D. E., Tar1, G. C., NEMCoK, M. & SiNHA, S. T. (eds) 2013.
Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 167—183.

First published online March 26, 2013, http: //dx.doi.org/10.1144/SP369.22 ) The Geological Society of London 2013.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics
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Fig. 9. Seismic example of the transitional domain along the Argentina margin. SDRs, seawards-dipping reflections;

twt, two-way travel time.
From: MoHRIAK, W. U., DANFORTH, A., PosT, P. I., BRowN, D. E., Tar1, G. C., NEMCoK, M. & SiNHA, S. T. (eds) 2013.
Conjugate Divergent Margins. Geological Society, London, Special Publications, 369, 167—183.

First published online March 26, 2013, http: //dx.doi.org/10.1144/SP369.22 ) The Geological Society of London 2013.
Publishing disclaimer: www.geolsoc.org.uk/pub_ethics
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Fig. 1. (A) Location map of well documented volcanic rifted margins (red lines from Geoffroy, 2005) and the locations of the multichannel seismic (MCS) reflection lines
shown below the map and in Fig. 6. (B) shows MCS data from the East Greenland Margin (from Hopper et al., 2003). (C) shows MCS data form the Exmouth Plateau of
Australia showing the 3 separate overlapping SDRs ‘units’ indicated with colored shading (from Planke et al., 2000). The top of volcanic sequence is labeled ‘t’, prominent
reflectors dividing the sequence into sub-units are labeled ‘r". (D) show MCS lines on the Argentinean side of the South Atlantic and (E) shows similar data from the conjugate
margin the South Africa with lines and letters representing interpreted boundaries between flow units (from Becker et al., 2016). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Palaeogeographic reconstruction of the south Atlantic during the Santonian (83.5 Ma) based on geophysical data, considering a fixed Africa, modified from Torsvik et al.
(2009). The authors proposed that at that time the Tristan and Santa Helena hotspots were located close to the spreading ridge. The ages of magnetic anomalies MO and M4

are based on Miiller et al. (1997). The positions ofthe seamounts that are possibly related to the Santa Helena hot spot are based on O'Neil et al. (2005), Adam et al. (2007) and Peyve
and Skolotnev (2014).
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L. Geoffroy / C. R. Geoscience 337 (2005) 1395-1408 1397

Extensional volcanic

No crustal extension coeval passive margin
with plume activity 50-80km
I I |
Eventual pre-plume sedimentary basin Eventual external highs Post-breakup sediments
Pre-breakup traps Onshore geology

“Oceanic:’ SDR

ha

Continental crust

Fig. 1. Across-strike section of a volcanic passive margin. The presence of internal sedimentary basins is not the rule. SDRint and SDRext:
respectively, internal and external seaward-dipping lavas and volcanic projections (i.e. ‘Seaward-Dipping Reflectors’ in offshore studies).

Fig. 1. Coupe schématique transverse d’une marge passive volcanique. L’existence de bassins sédimentaires en position interne n’est pas obligatoire.
SDRint et SDRext : prismes de laves inclinées vers 1’océan, en position interne ou externe (Seaward-Dipping Reflectors).
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Fig. 6. (A) Formation of SDR at VPM [30]: SDR are syn-magmatic roll-over flexures accommodated by continentward-dipping normal faults.
(B) Example of tilted continentward-dipping normal fault (yellow dots) in the internal SDR of SE-Baffin Bay (Svartenhuk Peninsula, see [31]).
Note also the reactivation of a dyke as a secondary normal fault during the seaward-tilt of the lavas and projections (red dots). (C) Outer SDR-prism
west of Australia [68]. Note the structure analogue to (A) and the existence of continentward-dipping faults (d) here interpreted as magma-injected
normal faults.

Fig. 6. (A) Mode de formation des SDR, interprétés comme des anticlinaux en ro/l-over développés au-dessus de failles a pendage vers le continent
[30]. (B) Exemple de SDR intemne, avec faille basculée a pendage vers le continent (points jaunes). Noter la réactivation d’un dyke comme
faille secondaire (points rouges) pendant le t 1 de la série, ituée de laves et surtout de projections volcaniques. Svartenhuk, marge
volcanique du Sud-Est de la baie de Baffin [31]. (C) Prisme SDR externe de la marge Ouest-Australienne. Noter la structuration analogue a celle
de (A) et la présence de failles profondes a pendage vers le continent (d), interprétées comme étant injectées de magma [68].
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Fig. 1. Regional location map of the Mid-Norwegian margin based on GEBCO bathymetry/topography grid (The GEBCO_08 Grid, version 20100927, http://www.gebco.net). (A) Main
physiographic features. AR: Aegir Ridge; BL: Bivrost Lineament; JMFZ: Jan. Mayen Fracture Zone; JMMC: Jan. Mayen Micro-Continent; MMH: Mere Marginal High; VMH: Vering

Marginal High. (B) Location of the regional map in the North Atlantic Area. EUR: Eurasia; GRN: Greenland; MR: Mohn's Ridge; RR: Reykjanes Ridge.
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Fig. 1. Regional location map of the Mid-Norwegian margin based on GEBCO bathymetry/topography grid (The GEBCO_08 Grid, version 20100927, http://www.gebco.net). (A) Main
physiographic features. AR: Aegir Ridge; BL: Bivrost Lineament; JMFZ: Jan. Mayen Fracture Zone; JMMC: Jan. Mayen Micro-Continent; MMH: Mere Marginal High; VMH: Vering
Marginal High. (B) Location of the regional map in the North Atlantic Area. EUR: Eurasia; GRN: Greenland; MR: Mohn’s Ridge; RR: Reykjanes Ridge.
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Fig 3. (A) Distribution of the volcanic facies seismic units in the Vering Margin, The 2D seismic profiles used in this study are indicated in the map. The profile A-A’ shows an example of 2D
mappingof the different seismic facies unit (in two way travel-time). (B) Basalt thickness map showing volcanic depocenters. COB: Continent-Ocean Boundary {located at the termination
of the K-Reflection); FG: Fenris Graben; SH: Skoll High; GH: Grimm High; GS, Gleipne Saddle; JMFZ: Jan. Mayen Fracture Zone, LSF: Lower Series Flows: NGR: North Gjallar Ridge; SDR:
Seaward-Dipping Reflector; SGR: South Gjallar Ridge; YH: Ygg High.

264 MM. Abdelmalak et al. | Tectonophysics 675 (2016) 258-274

ODP Hole 642E

Fig 4. (A) Depth converted (in km) seismic reflection profile showing the Lower Series Flows below the SDR in the Vering Margin (the Upper Series in the ODP Hole 642E). The profile is
tied to ODP Hole 642E. Locally the Lower Series Flows (the Lower Series in the ODP Hole 642E) top is defined as a strong negative in polarity reflection named the K-Reflection. (B) Seismic
reflection profile (in two way travel-time) example showing the Lower Series Flows below the Lava Delta. Below the Lower Series Flows several sill intrusions are identified. See Fig. 6 for
seismic profile location.
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Figure 13. Schematic outline of the volcanic processes and associated deposits found around the escarpment area. T
respective seismic volcanic facies (e.g., Inner Flows and Lava Delta) are also labeled. The sequence is characterized by
mixture of subaerial and subaqueous eruptions and transitions from subaerial to subaqueous environment. Lava Delta

prograde out from the paleoshoreline and deposit reworked volcanic debris/turbidite flows into the basin.
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Figure 15. (a) Offshore distribution of the volcanic facies seismic units in the mid-Norwegian Margin updated from Berndt et al. Figure 2. (a) Uninterpreted and (b) interpreted seismic sections high“ghting key seismic facies units of the lava delta
[2001b]. The Vering Escarpment and the Faeroe-Shedand Escarpment are indicated in the map. (b) Offshore distrbution system. (c) Schematic representation (not to scale) of a developing lava-fed delta. TB: top basalt, BB: base basalt. Data

of the volcanic facies seismic units in the NE Greenland Margin. The Thetis Escarpment is indicated ion the map. See Figure 1
for location. courtesy of TGS.
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Figure 2. Seismic example of the ocean-continent transition in the Vering margin (profile lo-
cation in Fig. 1). The Seaward-Dipping Reflector (SDR) wedge is characterized by a divergent
arcuate reflection pattern with increasing dip in the deeper part. The seismic velocity struc-
ture is determined using the Ocean Bottom Seismometer (OBS) profiles crossing the line,
OBS 11-03 (Breivik et al., 2014) and OBS 1-96 (Mjelde et al., 2003). The profile is tied to Ocean
Drilling Program (ODP) Hole 642E. The top of the crystalline basement shows velocity, Vp >
6.0 km/s. The Lower Crustal Body (LCB) near the base of the crust shows a high velocity (Vp
> 7.0 km/s). The Moho is associated with a mantle velocity Vp > 8.0 km/s toward the eonti-
nental crust and a Vp > 7.8 km/s toward the oceanic crust. (See the GSA D:
the uninteroreted seismic profile.)
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Figure 1. Onshore and offshore geclogical map and regional reconstruction ca. 52 Ma (inset;
based on Gaina et al., 2000). Offshore: distribution of the volcanic seismic facies units in the
mid-Norwegian margin. The extents of the dike swarms and sills are indicated. Onshore: simpli-

fied ical map lex (NC) defining the Scandinavian Caledonides.
Two distinctive segments are identified for the pre-Caledonian margin of Baltica: the scuthern
part is interp as hyp segment et al., 2012) and the cen-
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tral part is interpreted as transitional crust of magma-rich margin. JMFZ—Jan Mayan Fracture
Zons; GNC—Gula Nappe complex; JN—Jotun Nappe: KNC—Kalak Napps Complex; SNC—Seve
Mappe Complex; SDA—Seaward-Dipping Reflector; ODP—Gcean Drilling Program; COB—con-
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Figure 3. A: Different crosscutting dike generations. The sediments show vertical layering
(dashed white lines). The variable angles b 1 dikes and & ing indi different intru-
sion stages during tilting of the margin. The lozenge-shaped wall-rock fi developed
their shape during i i of dilational dikes (1 and 2). B: Outcrop of Fa-
voritkammen sedimentary group highly intruded by mafic dike swarm with a dike density to
70%-80%. C: East Greenland coastal dike swarms.

Figure 4. Simplified schematic illustration (not to scale) of different feeder
dike generations emplaced during the seaward-dipping reflector
(SDR) growth. The first dike generation (light gray) is tilted and crosscut
by a newer dike generation (dark gray) showing a vertical to subvertical dip.
Part of the transitional crust below the SDR is composed of highly intruded
sedimentary basin. The black box shows the position of the field analogue. LF—
Landward Flows; ODP—Ocean Drilling Program.
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Fig. 5. (A) Seismic reflection profile showing the Lower Series Flows below the SDRin the Vering Margin (in two way travel-time). (B) Flattened record on the K-Reflection allowing better
imaging of the internal reflections structures of the Lower Series Flows. (C) Example of average energy attribute for the Lower Series Flows showing a high reflected energy compared to
the Inner SDR and the underlying structures. IF: Inner Flows; LF: Landward Flows; LD: Lava Delta; LS: Lower Series; US: Upper Series. See Fig. 6 for seismic profile location.
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Fig. 1. Location of the study area (purple rectangle) within the Pelotas Basin in offshore Uruguay. Locations of 2D seismic lines used in this study and location of wells drille
Pelotas Basin and in other nearby basins are also shown. Raya-1 approximate well location taken from Spectrum (2015). (For interpretation of the references to colour in this fi;
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Fig. 28. Correlation between the lithostratigraphy of the Pelotas Basin proposed in Bueno et al. (2007) and the depositional sequences defined in this work. Modified from Bueno
et al. (2007).
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Fig. 3. Seismic character of the Prerift megasequence showing truncation of reflectors at the top of the megasequence. Vertical scale in seconds (TWT).
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Fig. 7. Seismic character of the synrift associated with the SDRs in dip seismic section. Vertical scale in seconds (TWT).
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Fig. 3. Portion of the dip-oriented profile IE-1400 crossing the northern segment of the 85°E Ridge. Both the horizontal and vertical scales are in kilometers. A — slumping and syn-
depositional disturbances within the ponded unit, B — upwarped landslide unit over the eastern arch, C — presence of lava deltas within the ridge indicating sub-aerial volcanism.
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Fig. 1. Satellite free-air gravity anomaly color code map of the 85°E Ridge and adjacent area of the Bay of Bengal (Sandwell et al., 2014). Black dotted lines show the network of
GXT multi-channel seismic profiles investigated in the present work. The solid red circles with white star show the locations of industry (ONGC) drill wells “A” and “B” locat
Eastern Continental Margin of India. Thick black lines show the locations of seismic sections illustrated in Fig. 2 and 3. The inset map shows the satellite derived bathymetry i
of the Bay of Bengal and trace of the 85°E Ridge from the Mahanadi Basin in the north Bay of Bengal to the Afanasy Nikitin seamount in the equatorial Indian Ocean
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The section of the seismic profile E1290 illustrates the internal structure of the 85°E Ridge. And its interpreted line diagram is shown below. The section displays char-
acteristic of volcanic plug, lava-fed delta units, etc. The ridge structure is completely buried under the thick Bengal Fan sediments deposited since the Oligocene-Miocene time (~23
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Fig. 3. The coast parallel deep-water seismic profile EG000 crossing the 85°E Ridge and its interpretation are shown (for location, see Fig. 1). The profile nearly orthogonally crosses
the profile E1290.
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Figure 17. Geological interpretation of seismic line BS-222 (above) and seismic velocities along the same line (below). A sizeable mountain-like feature can be recognized at bottom
of the layered sedimentary sequence. This structure has a positive seismic velocity anomaly indicating dense rock origin of the structure; we interpret this feature as a likely
Cretaceous volcano. The volcano was not eroded and its height is up to 2.5 s, indicating a Late Cretaceous water depth in excess of 2—3 km. The volcano was buried by sediments
later, during the Eocene. This hypothetical volcano is not mud volcano as was proposed by Graham et al. (2013).



BHYTPUNAUTHBIM MAarMmaTU3m



e L3 - FI MOHCKOe MmO p e GB. Kim et al. / Tectonophysics 504 (2011) 43-56 49

Ll
=3
L

Two-way travel time (s)

\ Philippine Sea
EastChina Sea ¢ Plate

(
/

g 1) Pysogeaply ofthe B S 1 6 UB: g o e Ullmg bk rspetey. Y. Yema e 06; O Dk M nd K. Mo
(b) Localiry map tracklines of during. board the RV Tamhae . Bathym
Snd ESKP: Wesiemand Eairn South Kore Pten, UK Ulleung Interplain Gap, UI: Ullewn ., AS: Anyongbok Seamount, DI: Dok ., KS: Kiminu Seamox
Tablemount, IT: Isabu Tablemount

@ S [Cadi-teMa T

South Korea Plateay Uloung Basin b
Stage-1 volcanses

Volcanic edifices of
{h £ B = stage-2 volcanic chain

Ca 17-12Ma \ “ E 40
v ®
/Sage 2 arism E
5
*
2 5.0
2

6.0

Fig. 6. (a) Selected seismic reflection profile showing overall topography of the UIG (for location, see Fig. 2a). (b) Details of the highly rugged acoustic basement of the UIG. Irregularly

b “ overlapping high-amplitude hyperbolae with almost transparent internal reflection configurations occur near the volcanic eruption centers. (c) Details of the crudely stratified
s Wierers W Dot Dltgracos. o seismic reflection facies of acoustic basement identified relatively far from the eruption centers. (d) Details of the acoustic basement types in the UIG. Rifted crustal blocks of the ESKP
and OB are bordering on the NW and SE of the UIG. Volcanic edifices are scattered along the eruption center. Underlying rifted blocks are identified in the western boundary of the

w E

Two-way travel time (s)

(c) One of the small volcanic cones scattered around the UIG. (d) Volcanic mound which supports small pinnacles with various vertex elevations.



J.R. Olyphant et .

100 Ma (1

Adpuka. Wenbd £
BUHeU Ne”

¢
Guinea Plateau S\

Demerara
Plateau
A 7 vigheangie nr - Listric N
10k, e e L Ry i
J.R. Olyphant et al. = - & = —l - Tectonophysics 717 (2017) 358-371
Normal fault Reverse fault Listric half-graben 1;_:_'\: Extent of rift volcanics 4 Volcanics
GU-2B-1
0 —=
21 A
£ 44 e ! 3
B = I
% 6 = g o =
(5]
o @ g il
' — L
81 g &
g oo
i 8 &
g 2
10 O O
A ; fil
SABU-1 GU-2B-1 £
0 g 2
@ Q
= c
< 8
24 = s
o 8
€ 2 iz
=1 § & 3
= & : HE
Q =
8 6 9 Neocomian
oL

Jurassic

\
10 it 3
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Fig. 3. Four interpreted seismic profiles from the 3-D surveys, A & C. Inset map of line locations shown in bottom-right corner of Line 3D-1. Lines 3D-1 and 3D-2 are inlines oriented
roughly parallel to the strike of the shelf margin. Lines 3D-3 and 3D-4 are crosslines that provide a dip-direction perspective of the continental shelf-slope-rise margin. Horizon/
unconformity colors are consistent with the stratigraphy presented in Fig. 2. The semi-transparent green lines beneath the Aptian ROU in Lines 3D-1 and 3D-4 highlight the top-lapping
angular unconformity characteristic of rift-onset unconformities (Franke, 2013). The red-shaded polygons represent interpreted Albian volcanics. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Figure 4. Representative 3D seismic profile of the study area. Discordant seismic anomaly (DSA), domal structure (DF), weak/blanking reflection zone (WRZ) and shallow gas are
labelled. The discordant seismic anomalies are subdivided into two levels. The first level (e.g. DSA; and DSAy;) has its axis approximately along the MPF (middle of polygonal fault
tier, blue dashed line) where the polygonal faults have their largest throws and shows positive reliefs at the surface of TPF (top of polygonal fault tier, green dashed line); the second
level (e.g. DSA, and DSA) is just below the first and does not show topographic expression at the TPF marker. O/MB = Oligocene/Miocene boundary. Note the insert in the left
bottom shows the thinning of overlain sediments of DSA4 between surfaces TPF and the reference surface. The lateral scale is same with this bounded between the two red dashed

lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Figure 5. Four categories of discordant seismic anomalies. (a): lensoid-shaped seismic
anomaly (DSAy;); (b): saucer-shaped seismic anomaly (DSA3); (c): stacked seismic
anomaly (DSAsp); (d): composite seismic anomaly (DSA;s). The key horizons are: TPF
(Top of Polygonal Fault Tier or Early/Middle Miocene Boundary) and MPF (Middle of
Polygonal Fault Tier).
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Figure 6. Representative 3D seismic profile of discordant seismic anomalies. The discordant anomalies become complex towards to the basement high. Weak/blanking reflection

zones (WRZs), shallow gases, ‘saucer’-shaped anomaly (DSA3s), stacked anomaly (DSA;g), composite anomaly (DSA9) and polygonal faults are labelled. O/MB = Oligocene/Miocene
boundary.
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Figure 9. (a) Three dimensional visualization of the seismic volume superimposed with the surface of top of polygonal fault tier (TPF). The positive reliefs indicate the occurrence of
discordant seismic anomalies (DSAs) below. (b) Three dimensional visualization of seismic volume superimposed with RMS amplitude attribute windowed 200 ms below the TPF.
The RMS amplitude attribute of discordant seismic anomalies have a positive relationship with the topographic reliefs of the TPF.
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Figure 10. The characteristics of lensoid-shaped discordant seismic anomaly (DSA;). (a) Representative seismic profile. Faults and block-like structure (marked Z) are labelled; (b)—
(g): coherence slices through the lensoid-shaped anomaly. Red dashed line is the boundary of the lensoid-shaped discordant seismic anomaly, Y = radial faults, Z = intrusive block;
(h) and (i): time slice at 3800 ms and line drawing interpretation; (j): the amplification of the area in red square in (a) shows the folded strata become thinner toward to the forced
fold; (k) shows the variable thickness between the surface of TPF and reference surface. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Figure 11. Representative characteristics of ‘saucer’-shaped seismic anomalies. (a) Coherence slice at 4000 ms (TWT), showing saucer-shaped discordant seismic anomalies DSA;
and DSA3 are nearly circular. Zones of chaotic reflections are indicated with letter Z. (b) Time slice at 4000 m showing the circular shape of discordant seismic anomalies DSA; and
DSA;3 (marked X); (c) Representative seismic profile through DSA, (marked X). WRZ = weak reflection zone; TPF = top of polygonal fault tier; location in (a); (d) Representative
seismic profile through DSA3g and DSAsg.
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Fig. 2. Schematic stratigraphic column of the Baiyun Sag in the Pear] River Mouth Basin showing lithostratigraphy, sea level variation, tectonic event and sedimentary environment (after

Pang et al,, 2008). The mounds occur between sequences Ts and T,.

Fig. 1. (A) The location of the study area and sedimentary basins in the northern South China Sea. Inset (top left): regional geological setting (after Sun et al,, 2012). The yellow rectangle
shows the location of Sun etal.'s (2014) study area; (B) Multi-beam bathymetry image of the study area showing water depth and the details of the seismic surveys used in this study. The
3D seismic survey is outlined by the black rectangle. The red dotted line and red solid lines indicate the locations of 2D seismic line and 3D seismic lines, respectively. The right white out-

line shows the location of a 3D visualization section. mbsl, meters below sea-level.
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Fig. 3. Regional SW-NE trending 2D seismic line and interpretational sketch illustrating the spatial and stratigraphic relationship between the intrusive and extrusive component; the sec-
tion presents 11 magmatic mounds and associated structures include igneous sills, lava flows and compaction folds. The single mounds (1-11) form part of a “composite” mound complex.
Two mapped seismic surfaces (TM and BM) are indicated. Mound 4 and mound 5 protruded above the seabed and form seamounts. Detailed descriptions are shown in Fig. 4. TM, top
mound reflection; BM, base mound reflection. See location in Fig. 1.

Fig 4. (A) Enlargement map of the black square in Fig. 3. (B) Schematic illustration of (A). The heights of mound 4 and mound 5 above seabed are 105 m and 45 m, respectively. (C) Multi-

beam bathymetric map of mound 4 and mound 5; see location in Fig. 1B. The mounds are clearly shown on the map. See location in Fig. 1.
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Fig. 6. (A) Representative 3D seismic section illustrating main features described in this paper; see location in Fig. 1B. The section shows 4 mounds (mound a, b ¢, d) and their geometrical
characteristics. The seismic surfaces TM and BM mark the top and the base of the mounds. Three sequence boundaries T, (10.5Ma), T4 (16 Ma) and Ts (18.5 Ma) are projected as reference.
(B) Close-up of a mound structure developed near the Early Miocene. The internal geometry of the mounds looks layered but discontinuous and reflections within the overburden show a
divergent configuration away from the mound structure. (C) Schematic illustration of (B). The mound is downwards defined by horizon BM. Tz, 10.5 Ma; T4, 16 Ma; Ts, 18.5 Ma. See lo-
cation in Fig. 1.



168 F. Zhao et al. / Marine Geology 355 (2014) 162-172

Fig. 7. (A) Seismic section showing three mound-shaped structures; see location in Fig. 1B. Mound e and mound f are developed above the upper tips of faults. Igneous sills are also de-
veloped along the faults. Mound d is located above an underlying sill to which they are linked by vertical zones (pipes). (B) The coherence map extracted along a time-slice 3528 ms be-
tween horizon T, and horizon TM shows low coherence around the mounds that can separate strongly from the surroundings. Mound structures, polygonal faults and tectonic faults are
clearly shown. The mounds are imaged as the circular plan view geometry on this map. (C) RMS amplitude extraction from the top and base reflection shows high amplitude anomalies
around the mound structures. TM, top mound; BM, base mound. See location in Fig. 1.
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3. Seismic profile from 3D survey area showing the geometry of the mound structures. The mounds are embraced by lava flow units and are clearly onlapped by overlying stratal re-
lons. The internal structure has a chaotic, transparent internal geometry different from the surrounding strata. Amplitude anomalies are seen right below the mounds and vertical
irbance can also be seen. The mounds and lava flow units are linked to deep parts by normal faults. Referred vertical magma migration from the interpreted deep lava flow unit to
ower levels was facilitated along inclined fault planes. See location in Fig. 1.

Fig. 9. 3D visualization map showing the internal structure of submarine mounds imaged as a series of internal stacked cones. The NW-NWW faults are represented in seismic section. See
location in Fig. 1.
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Fig. 10. Schematic four-stage evolution of submarine volcanic mounds and associated structures. The igneous structures ( submarine mounds, igneous sills, lava flows, compaction folds,
minor faults) and tectonic features (normal faults) were represented to reveal the formation of the igneous plumbing system. For details see Section 5.5.
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Fig. 1. (A): Location and structural map of the study area within the context of the Southwestern Barents Sea. The Stappen High developed in response to activity along the major
fault complexes such as the Knolegga Fault Complexes. Inset shows the location of the borehole used for seismic well tie and cross-plots for the igneous rocks in the study area and
also an analogue from borehole 6607/5-2 in the Vering Basin, Norwegian Sea. The structural map is modified from Gabrielsen et al. (1990). The red box shows the approximate
position of the seismic survey presented in Fig. 1B. (B): The seismic survey for this study includes approximately 3360 km of multiple 2D seismic reflection lines, which are recorded to

depth of 9200 m TWTT. The circles outline the approximate location of the seismic sections shown in the paper. Please note that Fig. 12A and B are the same seismic sections. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Workflow used for this research includes using the polarity of the seabed reflector to characterize seismic high-amplitude anomalies into a) ‘hard’ and b) ‘soft’ kicks (cf. Alves
et al, 2015). Hard kicks have complete loop of ‘trough-peak-trough’ polarity in the same manner as the seabed, while soft kicks are reflected as reversed polarity of ‘peak-trough-
peak’. Soft kicks are considered as indications of fluid or hydrocarbon in the subsurface. The white boxes on the seismic section highlight example of soft kicks (1 & 2) and hard kick
(3). See Fig. 1B for location of the seismic line.
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Fig. 5. Examples of ‘hard kicks’ in the study area. A) The eye -shaped sills are formed by the combination of a saucer-shaped sill (at the top) and a bowl-shaped sill (at the base). The
saucer-shaped sill have inner sill and outer sills that are linked by an inclined sheet. Eye-shaped sills are also characterized by accommodation folds at their upper part, which is
evidence for post-depositional deformation of the overlying strata B) Transgressive and bowl-shaped sills are found above extrusive rocks. Dykes are vertical to sub-vertical hard
kicks, which acted as conduits for emplacement of other sills in the study area. The extrusive rocks are parallel to sub-parallel layered positive high amplitude anomalies. See Fig. 1B

for location of the seismic sections.
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Fig. 6. A) Transgressive sills are upward stepping sills that are connected at subtle sill-sill junctions. They are regularly found close to the extrusive rocks or lava flows. B) The sill
swarms are formed by groups of saucer and bowl-shaped sills. They are often associated with hydrothermal vents. Sill swarms in the southern part of the study area form the
topography beneath most of the sedimentary overburden. At a local scale, individual sills making up the swarms have diverse geometries. See Fig. 1B for location of the seismic

sections.
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Fig. 7. ‘Soft kicks’ in this study were interpreted at shallower depth than their ‘hard kick’ counterparts. They are found within complex channel systems, canyons and also along
angular unconformities and bedding planes in the southern and eastern part of the study area. ER- Enhanced Reflection, BR — Bright Spot. The vertical scales were omitted from the two
figures and the locations of the seismic sections are not shown due to the confidential agreement.
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Fig. 13. Examples of focused fluid-flow features include hydrothermal vents which are characterized by (A) a dome at their tops, and (B) whose upper tips have been eroded by the

URU. (C) and (D) display a vertical clsuter of enhanced reflections and gas-charged sediments. These kinds of ‘soft kick' anomalies are associated with depressions which are
manifested as U-shaped craters on the seabed reflector. See Fig. 1B for location of the seismic sections.
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Fig. 2. S-N seismic section showing extensive faulting of the overburden associated with magmatic intrusion and subsequent stretching of the sediments above H9 and H7. Fault F1 and F2
are parts of the principal faults discussed in the text. In association with the magmatic sills are several crisscrossing reflections interpreted as seismic processing artefacts at depth of 5.5 s to
6.5 s TWTT. See Fig. 4d for location of the seismic line. Arrows in the figure are showing onlap reflections above H7.
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Fig. 10. Seismic section showing steps and other structures associated with brittle deformation of the sills. Steps are flow indicators within magmatic sills, which are generally oriented
parallel to the axis of sill emplacement (Schofield et al., 2012a, 2012b; Pollard et al., 1975; Thomson and Hutton, 2004). Steps can be concordant and disconnected when the sills is
extended or subjected to brittle deformation. (a) Seismic section showing a concordant pattern of steps in sills 6 and 7, which is discordant with respect to the underlying steps in sills
4 and 5 (b) Seismic section showing faults and steps associated with sills 4 to 7 (c) and (d) schematic interpretation of the seismic section in Fig. 11a and b. See Fig. 7 for location of
seismic lines.
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Fig. 11. (a) and (b) Uninterpreted seismic and schematic section showing example of likely sill-sill junctions between Sill 7 and Sill 6. The combination of the two sills would give rise to a
transgressive sill in 2D seismic section but in reality, the sills are disconnected and distinct sills in 3D. Also shown in the figure are examples of steps. The figure shows that the apex of the
interpreted fold on Horizon H9, which coincides with the crests of the underlying sills. See Fig. 7 for location of seismic line.
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Fig. 12. Additional local accommodation folds interpreted in the study area (a) show that the underlying reflections have moderate amplitude and are disrupted relative to the background
reflections. Signal disruption is attributed to fluids emanating from the underlying sills. The bowl-shaped sill is characterized by small-scale fractures and faults on its flanks. Amplitude of
the fold is approximately 242 m (using velocity of 2200 m/s) (b) magnified version of the sill in Fig. 13a (c) convex-up sills and evidence for fluid-flow in the study area. Amplitude of the
fold at the top of this sill is <110 m (using velocity of 2200 m/s). The adjacent figures are schematic representation of the seismic sections in Fig. 13a-c. See Fig. 6¢ for location of seismic
lines.
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shaped typical of hydrothermal vent complex. From top to base, the hydrothermal vent is intersected by several sills. Hence the conical shape from base to top. The seismic character of the

reflections below the sills is distinct from those of the vent complex and the underlying inferred acoustic basement. See Fig. 4d for location of seismic line.
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Fig. 14. (a) SSW-NNE seismic section through the hydrothermal vent complex. Towards the upper part of the conduit, sills deformed the sediments into disrupted low to medium
reflections and are interpreted as deformed sediments. (b) Chaos seismic section through the vent shown in 14a. The chaotic signal associated with the migration of fluid through the

vent made it possible to interpret the geometry of the vent (c) Faulting at the upper of the vents is related to the presence of older sills (d) a chaos seismic section through the same
section in Fig. 14c. See Fig. 7 for location of seismic line.
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Fig. 15. (a) Examples of distinct fluid-flow conduits or like hydrothermal vent complexes that show less interaction with magmatic sills from across stratigraphic levels. The bases of the
vents are located on at the tips of the underlying sill complex. (b) Chaos seismic section through the same section in Fig. 14c. This seismic attribute has allowed the geometry of the
conduits/hydrothermal vents to be interpreted as conical and columnar. See the yellow circle in Fig. 7 for location of seismic line.
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Fig. 16. Examples of hydrothermal vent complexes that are intersected by magmatic sills across stratigraphic levels. The presence of the sills along the path of the vents makes it hard to
distinguish the individual reflections on seismic sections. Also interpreted in the study area are dykes, which are sub-vertical high amplitude reflections between sills. To distinguish the
sills, vents, dykes and other reflections, a chaos seismic section is provided in (b). In addition to sills interacting with hydrothermal vents, the passage of fluid from these vents is linked to
disparage deformation of the overburden. (¢) to (f) shows the different faults types that are associated with the vent shown in (a). See Fig. 7 for location of seismic line.
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Fig. 17. (a) Conceptual model explaining the evolution of the regional forced fold on Horizon 7 and the Naglfar Dome. The forced fold is direct manifestation of the forceful emplacement of
magma through the sedimentary rocks in Early to Mid-Eocene while the Naglfar Dome on the other hand evolved in Miocene in response to regional compressional inversion that affected
the Vering Basin. (b) Schematic diagram explaining the implication of magmatic intrusion on reservoir and source rock quality and compartmentalization as modified the work of
Rohrman (2007). The geosection is located in the North Atlantic Igneous Province (NAIP). The effect of magmatic intrusion decreases with increasing distance from the sills. The
contact aureole has been included based on the model of Planke et al. (2005).



254

B.V. Buarque et al. / Journal of South American Earth Sciences 70 (2016) 251267

300000

Paraiba
Basin
Platform

)))y)' 2 CP-01-PE
e X Borehole

= = Plateau limits

/ —— CoastLLine

/ =3 Inner Basin
Maracatu High
\ / [ Outer Plateau Basin

/ 20 ki [ Maragogi High

Inner Basin Platform : Plateau Region

A 2CP Well o B

0 Sq4 - Middle Miocene-Recent Il Volcanics -Albian-Recent? ] Sq2 - Albian-Maastrchtian

[ | 8q3 - Maastrichtian-Middle Miocene Il Evaporites - Upper Aptian? || Sq1 - Aptian-Albian [ Basement

FOXKHaAa AmepuKa

Fig. 2. A) Simplified structural map that shows the main domains of the Pernambuco Basin. B) Schematic geological section based on the interpretation of two 2D seismic sections
(A—A’ and BB'), which are marked by the red continuous lines. The black star marks the location of the 2CP-01-PE stratigraphic well. The individualizations and estimated ages of
the main seismic-sequences are based on the stratigraphic analysis performed under this research, the onshore stratigraphic framework (Barbosa et al., 2014), and correlation with
the stratigraphy of the offshore neighbouring Alagoas Basin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 4. Map showing the locations of the 59 selected seismic sections across the offshore domains of the Pernambuco Basin; they were selected to best describe the volcanic
structures. The basement structural contour in time is also shown, revealing the main topographic highs and depocentres of the basin. The blue polygons indicate the location of the
GV1 volcanic group, the orange polygons indicate the volcanic structures included in the GV2 group, and the black stars indicate the locations of vents. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. A) Schematic description of a volcanic vent, with the main relations of the overlying and internal strata geometries that were used to define its general classification
(modified from Planke et al., 2005). B) geometry of the upper part of the vent complexes.
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Fig. 7. Seismic section (see the location in Fig. 4) showing a series of volcanic structures. A) Magnetic and gravimetric curves acquired over the seismic section showing an anomaly
caused by the volcanic structures. B) Examples of the interpreted volcanic buildings (PV1—PV3), sills and related sequences of volcaniclastic deposits (VC—dotted yellow line).
SB = Sea bed; Sq.4 = Middle Miocene Unconformity; Sq.3 = Maastrichtian Unconformity. C) Detail of volcaniclastic deposits and sill intrusions presenting high amplitudes with
abrupt terminations. D) Detail of cone-shaped volcanic buildings and volcaniclastic deposits between them. PV2 is interpreted as having a polygenetic evolution. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)



259

—267

B.V. Buarque et al. / Journal of South American Earth Sciences 70 (2016) 251

1518
2,020
2506
3.009°
3511
4014
4.500

%oulline
2200m)|

Moun

Mound outline

8‘5 km

Deth to TV Horizon|

d outline
v

Moun

s SX8538 /=
m«lzzaa“

Deth to TV Horizon
! (trom sea-level)

[}
£
=
3
o T
[
2
(<}
=

Deth to TV Horizon
(from sea-level)

outlin
i

Mofind

Fig. 8. Volcanic structures observed in seismic sections of the Pernambuco Plateau. A to E) composed detail of the samples and the location of the structure shown in Fig. 4. A, B, and

C) volcanoes of group GV1. D and E) volcanoes of group GV2. The dotted lines represent the estimated diameters of the structure as interpreted in intersecting seismic sections (vpu

— velocity pull-up, PS — reflector marking the palaeo seabed horizon that served as the base for extrusive building, TV — reflector marking the top of the horizon).



B.V. Buarque et al. / Journal of South American Earth Sciences 70 (2016) 251-267

|

C 0.5km N

Legend

SF1i - Continuous to disrupted, high-amplitude, sub-parallel reflections
SF1ii - Continuous to disrupted, low-amplitude, sub-parallel reflections

SF2 - Continuous, high-amplitude, pioneer extrusion

SF3 - chaotic reflections < Onlap 4— Downlap

Fig. 9. Schematic of the three groups of strata that form the volcanic structures, based
on the seismic facies interpretation. A) Schematic based on the volcano in Fig. 8b, B)
schematic based on the interpretation of the structure in Fig. 7d, and C) schematic
based on the interpretation of the structure in Figs. 7d and 8d.



ABcCTpanusa

EJ.E. Meeuws et al. / Marine and Petroleum Geology 73 (2016) 271-298

f

Radiometric ages Fig. 6
e 350y
° Location of
. representative
e 10.0 Ma seismic lines = \
. 4 Ages based o B i
'~ A on seismic -
o 20.0 Ma A data =
. 1
L ]
@ 30.0 Ma : ng. 8
o H '
a : ]
- : ;
i
¢ 50.0 Ma Fig. 8 E Fig. 143
. ' )
® ' H
@ 66.5Ma ! Otway-Sorell Fig. 13 :
Basin \ :
Fig. 15 ] ~g——
. --------:

277

Fig. 5. Distribution of Cenozoic volcanic rocks along the Australian southern margin with locations of colour-coded age-dated samples (compiled from Vasconcelos et al. (2008),
Gibson (2007), O'Brien et al. (2008)) and location of representative seismic lines discussed further in the text.



278 FJ.E. Meeuws et al. / Marine and Petroleum Geology 73 (2016) 271-298

NW SE

——
()
N
(o)
= TR
= ed foldingof " °
g 2 ovirlyin;g sediments e S| —————
—_—— & 3
& 2
T
=
S Hammerhead SS_ S o2 - -'“
D —— - = = % ¥ - s -~ % T - = = e -
~— = - e ot = S e [ e
S S : o e o _b6km [ :
+3 = SR _ e et TN SN e - R T il erd
_ r - e LI L L T L e e ]

Fig. 7. Part of seismic line wOOfdw0087 (reverse SEG polarity). Examples of magmatic features in the Ceduna sub-basin of the Bight Basin. Location of seismic line is shown in Fig. 5.
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Fig. 8. Seismic line 137-09 (reverse SEG polarity). Eastern Otway regional cross-section, interpretation modified from Krassay et al. (2004 ). Location of seismic line is shown in Fig. 5.
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Blevin et al. (2005). Location of seismic line is shown in Fig. 5.
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Fig. 1. Existing models of saucer-shaped sill emplacement mechanisms. Numbers
(1) and {2) indicate the steps of emplacement. a. Model of emplacement controlled at
the level of neutral buoyancy (LNB), Modified from Francis (Bradley, 1965; Francis,
M 1982 e.g., Barker, 2000). Sills are fed larerally from one part of the outer sills. b. Model of

A emplacement along horizontal discontinuity, modified afrer Malthe-Sarenssen et al.

(2004). Sills are fed radially from the inner sill. See text for more information.
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Fig. 13. Diagrammatic sketches illustrating the proposed stages in the development of domes along the inner sills of saucers, such as dolerite A. The arrows indicate magma movement
during each stage (nr. 1-2). Cross-sectional views with the section lines are shown for each developmental stage with the magma propagation direction extending into the page. Refer
to the text for more information.
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Fig. 8.a. Geological cross section of the southern part of the Golden Valley Sill and the underlying Morning Sun Sill (along B-B1 in Fig. 3). Although there is a physical contact between
the two sills, their different geochemistry shows that the MSS was not the feeder of the GVS. b. Example of seismic image showing contact between two saucer-shaped sills,
interpreted as feeding relationship (modified after Hansen et al., 2004). The comparison between this image and the geological cross section of the GVSC show remarkable
similarities. Because our study shows that contacts between sills are not obviously feeding relationships, we propose another interpretation where each sill (highlighted in red and
purple) may represent a distinct batch of magma. Thus, in order to infer the nature of these contacts on seismic images, more criteria are needed.
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Fig. 7. Mechanisms for intrusion propagation and cup-shaped intrusion growth: (a) dyke propagates by infiltrating normal faults by repetitive branching, (b) for low
viscosity intrusive liquids, a small inverted cone-like structure forms initially. Then a inverted a cup-shaped structure develops, forming a dome at the surface of the
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CxemaTunyeckas moaenb MarmaTM3ama Ha rpaHuue bappema u anTa.
MarmaTtusmy npeaLiectsosana ¢asa MaaoaMNINTYAHOIro BO3AbIMaHUA

BasanbThbl, ByfIKaHOreHHO-0Ca40uHble Nopoabl, YrIw.
HasemHble nanusaHunsa nas. MowHoctb Tonwm go 100-200 meTpos
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